Machine Learning and Optimization Techniques in IoT and Smart Systems: A Survey of Recent Trends
Anasuya
Guru Nanak Dev Engineering College Bidar, India
Abstrct:
The growth of the Internet of Things (IoT) and smart systems has paved the way for the integration of machine learning (ML) and optimization techniques to enhance their efficiency, security, and scalability. This survey provides a comprehensive overview of recent advancements in applying machine learning algorithms and optimization strategies to IoT and smart systems. It highlights key areas where these technologies intersect, such as energy efficiency, intelligent decision-making, resource management, and anomaly detection. The paper discusses various machine learning approaches, including deep learning, reinforcement learning, and supervised/unsupervised models, that have been applied to optimize system performance in real-time applications. Furthermore, the survey examines optimization techniques like metaheuristics, evolutionary algorithms, and gradient-based methods that improve IoT systems' reliability and resource utilization. The integration of these techniques offers significant advantages, including reduced latency, enhanced security, and increased adaptability in smart systems. The findings emphasize the importance of adopting ML and optimization methods to address the challenges posed by the growing complexity of IoT environments, fostering future innovations in connected and autonomous systems. This survey serves as a resource for researchers and practitioners seeking to explore the synergies between IoT, ML, and optimization techniques.
Keywords:
Machine learning, Optimization techniques, Smart systems, Deep learning, Metaheuristics
Published on: 09-2024
DOI: https://doi.org/10.70295/SMDJ.2409026
Journal Name: Science Management Design Journal
Volume: 02
Issue: 03
Pages: 19-27
Month: September
Year: 2024
References
1. Dhumane, A. V., & Prasad, R. S. (2019). Multi-objective fractional gravitational search algorithm for energy efficient routing in IoT. Wireless networks, 25, 399-413. https://doi.org/10.1007/s11276-017-1566-2
2. Dhumane, A., Prasad, R., & Prasad, J. (2016). Routing issues in internet of things: a survey. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 1, pp. 16-18).
3. Ahammad, S. H., Kale, S. D., Upadhye, G. D., Pande, S. D., Babu, E. V., Dhumane, A. V., & Bahadur, M. D. K. J. (2022). Phishing URL detection using machine learning methods. Advances in Engineering Software, 173, 103288. https://doi.org/10.1016/j.advengsoft.2022.103288
4. Dhumane, A. V., Prasad, R. S., & Prasad, J. R. (2020). An optimal routing algorithm for internet of things enabling technologies. In Securing the Internet of Things: Concepts, Methodologies, Tools, and Applications (pp. 522-538). https://doi.org/10.4018/978-1-5225-9866-4.ch028
5. Dhumane, A. V., & Prasad, R. S. (2018). Fractional gravitational grey wolf optimization to multi-path data transmission in IoT. Wireless Personal Communications, 102(1), 411-436. https://doi.org/10.1007/s11277-018-5850-y
6. Dhumane, A., & Prasad, R. (2015). Routing challenges in internet of things. CSI Communications, 19-20.
7. Dhumane, A. V., Markande, S. D., & Midhunchakkaravarthy, D. (2020). Multipath transmission in IoT using hybrid Salp swarm-differential evolution algorithm. J Netw Commun Syst, 3(1), 20-30. https://doi.org/10.46253/jnacs.v3i1.a3
8. Dhumane, A. V. (2020). Examining user experience of elearning systems using EKhool learners. Journal of Networking and Communication Systems, 3(4), 39-55. https://publisher.resbee.org/jnacs/archive/v3i4/a4/p4.pdf
9. Dhumane, A., Bagul, A., & Kulkarni, P. (2015). A review on routing protocol for low power and lossy networks in IoT. Int. J. Adv. Eng. Glob. Technol, 3(12), 1440-1444.
10. Dhumane, A., Guja, S., Deo, S., & Prasad, R. (2018). Context awareness in IoT routing. In 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (pp. 1-5). IEEE. 10.1109/ICCUBEA.2018.8697685
11. Dhumane, A., Chiwhane, S., Mangore Anirudh, K., & Ambala, S. (2022). Cluster-based energy-efficient routing in Internet of Things. In ICT with Intelligent Applications: Proceedings of ICTIS 2022, Volume 1 (pp. 415-427). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3571-8_40
12. Meshram, V., Patil, K., Meshram, V., Dhumane, A., Thepade, S., & Hanchate, D. (2022). Smart low cost fruit picker for Indian farmers. In 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA (pp. 1-7). IEEE. 10.1109/ICCUBEA54992.2022.10010984
13. Mahir, A., Banavalikar, T., Budukh, M., Dhodapkar, S., & Dhumane, A. V. (2018). Soil monitoring system using Zigbee for smart agriculture. International Journal of Science Technology and Engineering, 4(7), 32-38. https://www.ijste.org/articles/IJSTEV4I7019.pdf
14. Bhute, A., Bhute, H., Pande, S., Dhumane, A., Chiwhane, S., & Wankhade, S. (2024). Acute Lymphoblastic Leukemia Detection and Classification Using an Ensemble of Classifiers and Pre-Trained Convolutional Neural Networks. International Journal of Intelligent Systems and Applications in Engineering, 12(2024), 571-580. https://ijisae.org/index.php/IJISAE/article/view/3955
15. Prasad, J. R., Prasad, R. S., Dhumane, A., Ranjan, N., & Tamboli, M. (2024). Gradient bald vulture optimization enabled multi-objective Unet++ with DCNN for prostate cancer segmentation and detection. Biomedical Signal Processing and Control, 87, 105474. https://doi.org/10.1016/j.bspc.2023.105474
16. Meshram, V., Choudhary, C., Kale, A., Rajput, J., Meshram, V., & Dhumane, A. (2023). Dry fruit image dataset for machine learning applications. Data in Brief, 49, 109325. https://doi.org/10.1016/j.dib.2023.109325
17. Dhumane, A. V., Kaldate, P., Sawant, A., Kadam, P., & Chopade, V. (2023). Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques. In International Conference On Innovative Computing And Communication (pp. 677-693). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-3315-0_52
18. Dhumane, A., & Midhunchakkaravarthy, D. (2020). Multi-objective whale optimization algorithm using fractional calculus for green routing in internet of things. Int. J. Adv. Sci. Technol, 29, 1905-1922. http://sersc.org/journals/index.php/IJAST/article/view/6209
19. Midhunchakkaravarthy, D., & Dhumane, A. (2020). Routing Protocols in Internet of Things: A Survey. 2273
20. Amol, D., & Rajesh, P. (2014). A review on active queue management techniques of congestion control. In 2014 International Conference on Electronic Systems, Signal Processing and Computing Technologies (pp. 166-169). IEEE. https://doi.org/10.1109/ICESC.2014.34
21. Dhumane, A., Chiwhane, S., Tamboli, M., Ambala, S., Bagane, P., & Meshram, V. (2023). Detection of Cardiovascular Diseases Using Machine Learning Approach. In International Advanced Computing Conference (pp. 171-179). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56703-2_14
22. Ramani, A., Chhabra, D., Manik, V., Dayama, G., & Dhumane, A. (2022). Healthcare information exchange using blockchain technology. In International Conference on Communication and Intelligent Systems (pp. 91-102). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2322-9_8
23. Chaturvedi, A., & Dhumane, A. V. (2021). Future of 5G Wireless System. Journal of Science & Technology (JST), 6(Special Issue 1), 47-52. https://doi.org/10.46243/jst.2021.v6.i04.pp47-52
24. Dhumane, A., Sakhare, N. N., Dehankar, P., Kumar, J. R. R., Patil, S. S., & Tatiya, M. (2024). Design of an Efficient Forensic Layer for IoT Network Traffic Analysis Engine Using Deep Packet Inspection via Recurrent Neural Networks. International Journal of Safety & Security Engineering, 14(3), 853-863. https://doi.org/10.18280/ijsse.140317
25. Chiwhane, S., Shrotriya, L., Dhumane, A., Kothari, S., Dharrao, D., & Bagane, P. (2024). Data mining approaches to pneumothorax detection: Integrating mask-RCNN and medical transfer learning techniques. MethodsX, 12, 102692. https://doi.org/10.1016/j.mex.2024.102692
26. Tamboli, M. S., Dhumane, A., Prasad, R., Prasad, J. R., & Ranjan, N. M. (2024). Stationary wavelet transform and SpinalNet trained light spectrum Tasmanian devil optimization enabled DR detection using fundus images. Multimedia Tools and Applications, 1-30. https://doi.org/10.1007/s11042-024-19048-4
27. Rao, A. T., Kumar, A., Choudhary, R., Kanjia, K., Dhumane, A., Zade, N., & Deokar, S. (2024). Smart IoT Devices: An Efficient and Elegant Revolution Using Smart Switches. In International Conference on Smart Computing and Communication (pp. 129-141). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-97-1313-4_12
28. Prasad, R., Prasad, J., Ranjan, N., Dhumane, A., & Tamboli, M. (2024). Fractional Pelican African Vulture Optimization-based classification of breast cancer using mammogram images. The Imaging Science Journal, 1-21. https://doi.org/10.1080/13682199.2023.2298111
29. Dhumane, A., Chiwhane, S., Thakur, S., Khatter, U., Gogna, M., & Bayas, A. (2023). Diabetes Prediction Using Ensemble Learning. In International Advanced Computing Conference (pp. 322-332). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56703-2_26
30. Dhumane, A., Chiwhane, S., Singh, A., Koul, A., Panchal, M., & Parida, P. (2023). ELECTRA: A Comprehensive Ecosystem for Electric Vehicles and Intelligent Transportation Using YOLO. In International Advanced Computing Conference (pp. 178-189). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-56700-1_15
31. Dhumane, A., Tamboli, M., Ambala, S., Game, P., Meshram, V., & Patil, R. (2023). Machine Learning Approach for Predicting the Placement Status of Students. In 2023 7th International Conference On Computing, Communication, Control And Automation (ICCUBEA) (pp. 1-6). IEEE. https://doi.org/10.1109/ICCUBEA58933.2023.10392268
32. Dhumane, A., Pawar, S., Aswale, R., Sawant, T., & Singh, S. (2023). Effective Detection of Liver Disease Using Machine Learning Algorithms. In International Conference on ICT for Sustainable Development (pp. 161-171). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-99-6568-7_15
33. Shinde, M. A. R., Dumbre, M. P. G., Borkar, M. R. K., Patil, M. K. H., & Dhumane, A. V. (2021). Identifying Individual Specimens Among Species Using Computer Vision. International Journal of Innovations in Engineering Research and Technology, 8(06), 184-193. https://doi.org/10.17605/OSF.IO/GHWDY
34. Nalini, C. Kharabe.S (2017). A Comparative Study On Different Techniques Used For Finger–Vein Authentication. International Journal Of Pure And Applied Mathematics, 116(8), 327-333.
35. Birajdar, U., Gadhave, S., Chikodikar, S., Dadhich, S., & Chiwhane, S. (2020). Detection and classification of diabetic retinopathy using AlexNet architecture of convolutional neural networks. In Proceeding of International Conference on Computational Science and Applications: ICCSA 2019 (pp. 245-253). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-15-0790-8_25
36. Kothari, S., Chiwhane, S., Jain, S., & Baghel, M. (2022). Cancerous brain tumor detection using hybrid deep learning framework. Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), 26(3), 1651-1661. http://doi.org/10.11591/ijeecs.v26.i3.pp1651-1661
37. Kharabe, S., & Nalini, C. (2018). Using adaptive thresholding extraction—robust ROI localization based finger vein authentication. J. Adv. Res. Dyn. Control Syst, 10(7), 500-514.
38. Kharabe, S., & Nalini, C. (2018). Survey on finger-vein segmentation and authentication. Int J Eng Technol, 7(1-2), 9-14.
39. Chiwhane, S. A., Deepa, M., & Shweta, K. (2017). IOT Based Fuel Monitoring for Future Vehicles. International Journal of Advanced Research in Computer and Communication Engineering, 6, 295-297.
40. Anandan, R., Nalini, T., Chiwhane, S., Shanmuganathan, M., & Radhakrishnan, P. (2023). COVID-19 outbreak data analysis and prediction. Measurement: Sensors, 25, 100585. https://doi.org/10.1016/j.measen.2022.100585
41. Chaudhary, S., Shah, P., Paygude, P., Chiwhane, S., Mahajan, P., Chavan, P., & Kasar, M. (2024). Varying views of maxillary and mandibular aspects of teeth: A dataset. Data in Brief, 56, 110772. https://doi.org/10.1016/j.dib.2024.110772
42. Patil, J., & Chiwhane, S. (2023). AI-Powered Automated Methods for Predicting Liver Disease: A Recent Review. In International Conference on Advancements in Smart Computing and Information Security (pp. 161-172). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-58604-0_11
43. Dawkhar, S., & Chiwhane, S. (2021). Privacy Violation Patterns in Non-Relational Databases. Journal of Science & Technology (JST), 6(Special Issue 1), 42-46. https://doi.org/10.46243/jst.2021.v6.i04.pp42-46
44. Sawant, S., Garg, R. D., Meshram, V., & Mistry, S. (2023). Sen-2 LULC: Land use land cover dataset for deep learning approaches. Data in Brief, 51, 109724. https://doi.org/10.1016/j.dib.2023.109724
45. Rasane, K., Bewoor, L., & Meshram, V. (2019). A comparative analysis of intrusion detection techniques: Machine learning approach. In Proceedings of International Conference on Communication and Information Processing (ICCIP). http://dx.doi.org/10.2139/ssrn.3418748
46. Jadhav, R., Suryawanshi, Y., Bedmutha, Y., Patil, K., & Chumchu, P. (2023). Mint leaves: dried, fresh, and spoiled dataset for condition analysis and machine learning applications. Data in Brief, 51, 109717. https://doi.org/10.1016/j.dib.2023.109717
47. Meshram, V., Suryawanshi, Y., Meshram, V., & Patil, K. (2023). Addressing misclassification in deep learning: a merged net approach. Software Impacts, 17, 100525. https://doi.org/10.1016/j.simpa.2023.100525
48. Kanorewala, B. Z., & Suryawanshi, Y. C. (2022). The Role of Alternate Nostril Breathing (Anuloma Viloma) technique in regulation of blood pressure. Asian Pacific Journal of Health Sciences, 9(2), 48-52. https://doi.org/10.21276/apjhs.2022.9.2.12
49. Suryawanshi, Y. C. (2021). Hydroponic cultivation approaches to enhance the contents of the secondary metabolites in plants. In Biotechnological approaches to enhance plant secondary metabolites (pp. 71-88). CRC Press. https://doi.org/10.1201/9781003034957
50. Visvanathan, G., Patil, K., Suryawanshi, Y., & Chumchu, P. (2023). Sensor based dataset to assess the impact of urban heat island effect mitigation and indoor thermal comfort via terrace gardens. Data in Brief, 49, 109431. https://doi.org/10.1016/j.dib.2023.109431
51. Suryawanshi, Y., Meshram, V., Patil, K., Testani, M., Chumchu, P., & Sharma, A. (2024). The image dataset of Indian coins: A machine learning approach for Indian currency. Data in Brief, 53, 110098. https://doi.org/10.1016/j.dib.2024.110098